Substrates of Ternary and Quaternary III-V Compounds

Partha S. Dutta

Electrical, Computer and Systems Engineering Department &

Center for Integrated Electronics, Electronics Manufacturing and Electronic Media Rensselaer Polytechnic Institute, Troy, NY

E-mail: duttap@rpi.edu

Outline

- The Science of Ternary Crystal Growth
 - The Metallurgical Aspect
 - Heat and Mass Transport
 - Ternary Seed Generation Methods
 - Alloy Composition Control (for homogeneous growth)
 - Temperature Stability Requirement
 - III-V Ternary Substrates
- Quaternary "Cooking"
- Alloy Bonding and Engineered Substrates
- Surface Preparation and Analysis of Antimonides

The Metallurgical Aspects of Ternary Alloy

Compositional Variation and Crack Formation

Mass (Solute) Transport Mechanisms from Bulk Melt to Solid-Liquid (Growth) Interface

Defects at the Seeding Interface

• Maximum lattice mismatch ($\Delta a/a$) allowed for stable single crystal growth across step graded interface must be less than 0.5%

Defects at the Seeding Interface

• Maximum step composition change allowed for stable single crystal growth across interface must be less than 5 mol% (with lattice-mismatched end binaries)

Effect of Temperature Gradient on Growth Rate

Growth Rate
Increases with
Temperature
Gradient

Effect of Temperature Gradient on Growth Morphology (with Solute Feeding)

Uncontrolled
Solute transport
leads to multiphase
formation

Ternary Seed Generation

J. Crystal Growth **173**, 42 (1997)

J. Crystal Growth 205, 270 (1999)

Alloy Composition Control by External Solute Feeding

Depleted components are fed during growth from an external source

Alloy Composition Control by Optimizing Hole Diameter in Double Crucible Method

J. Crystal Growth 208, 171 (2000)

Solute Transport from feed to seed is reduced by decreasing hole diameter

Alloy Composition Control via Submerged Baffle

In-situ Alloy Composition Control by Varying Temperature Gradient and Growth Rate

In-situ composition control is easier to implement and has produced highest quality ternary crystals

J. Crystal Growth **205**, 270 (1999) J. Crystal Growth **208**, 171 (2000) J. Crystal Growth **217**, 360 (2000)

Temperature Stability Requirements for Homogeneous Ternary Growth

Ga(1-x) In(x) Sb

Ga(1-x) In(x) As

Temperature Stability of a Specially Designed Crystal Growth System (for alloy growth)

Temperature Fluctuations less than 0.2 °C

III-V Ternary Substrate Technology

- Well Established Technology
 - $Ga_{1-x}In_xSb$ (x = 0 to 0.45)
 - $Ga_{1-x}In_xAs$ (x = 0 to 0.35, 0.75 to 100)
- Under Development
 - $Al_{1-x}In_xSb$ (x = 0 to 0.4) for semi-insulating antimonide substrates

Engineering Phase Formation Thermo-Chemistry for Quaternary Alloys

Phase formation and their composition is dependent on the sequence in which binary alloys are mixed

J. Elec. Mater. **29**, 956 (2000)

Alloy Bonding and Engineered Substrates

Surface Structures of GaSb Commercial Substrates (AFM Images)

Ultra-clean and atomically smooth surface

Summary

- Ternary Crystal Growth: More Science, Less Art
 - Reliable substrate technology has been developed for GaInSb and GaInAs: mass production yet to happen
- Quaternary Alloy Growth: "Sequential" and "Irreversible" Chemistry
 - Enables interesting possibilities such as hetero-bonding and epitaxy by alloying (apart from bulk quaternary substrates)
- Reliable chemo-mechanical polishing slurry for antimonides is not yet available. Chemical polishing results in better surfaces.